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Flow-induced vibrations of a deformable ring
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To understand flow-induced vibrations of deformable objects, we numerically
investigate dynamics of a pressurized elastic ring pinned at one point within a uniform
flow by using an immersed-boundary algorithm. The boundary of the ring consists of
a fibre with no bending stiffness, which can be modelled as a linear spring with spring
constant k and zero unstretched length. The vibration of the ring is decomposed
into two parts: a pitching motion that includes a rigid-body rotation and a flexible
bending motion in the transverse direction, and a tapping motion in the longitudinal
direction. The pitching motion is dominated by the frequency of vortex shedding,
whereas the primary frequency of the tapping motion is twice the frequency of
vortex shedding. At the Reynolds number of 100, resonance is observed when k ∼ 0.2
(k is normalized by the diameter of the undeformed ring, the speed of the upcoming
flow and the fluid density). Across the resonance region, abrupt jumps in terms of
the motion amplitudes as well as the hydrodynamic loads are recorded. Within the
resonance region, the lift force demonstrates a beating phenomenon reminiscent of
findings through reduced models and low-degree-of-freedom systems.

1. Introduction
Interactions between fluid and flexible structures are ubiquitous in nature (see

e.g. Vogel 1996). In living creatures, structural flexibility provides an important
mechanism to enhance their structural stability, locomotion capacity and physiological
performance in surrounding flow fields. For example, through its body deformations
a fish can extract energy from incoming vortex streets to reduce energy expenditure
in swimming; in an extreme case, self-propulsion of a dead fish inside a vorticity
field without muscle activation has been observed (Liao et al. 2003; Eldredge &
Pisani 2008). In addition, the anisotropic flexibility of fish fins imparted by the
distribution of embedded rays was found to significantly increase the propulsion
efficiency (Zhu & Shoele 2008). Structural flexibility is also critical in the physiological
function of cells. The deformability of erythrocyte (red blood cells or RBC), as
determined by its composite membrane including a lipid bilayer and a protein skeleton
made of actin and spectrin, is essential for maintaining its structural integrity and
stability during circulation when it squeezes through capillaries (Mohandas & Evans
1994).

It is convenient to obtain physical insights about the underlying fluid–structure
interaction mechanisms by studying flow interactions with idealized structures such
as fibres or beams. Via experimental measurements and theoretical studies of the
flow around a glass fibre, Alben, Shelley & Zhang (2002) observed drag reduction
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attributed to streamlining effect as a result of structural flexibility (see also Alben,
Shelley & Zhang 2004). Specifically, with sufficient structural deformation, the scaling
law of drag with respect to the incoming flow speed U transits from U 2 to U 3/4.
Similar behaviour has been reported in low-to-moderate Reynolds numbers through
numerical simulations with an immersed-boundary algorithm (Zhu 2008).

Another type of simple structure under investigation is an elastic loop. By
experimentally examining deformations and near-body flow fields of such a loop
embedded in a fast flowing soap film at a Reynolds number of 5000, two distinctive
states, a stationary state and a oscillatory state, were observed (Jung et al. 2006). The
stationary state corresponds to a conventional von Kármán vortex street in the wake
(i.e. 2S mode); in the oscillatory state, the body undergoes vibrations and two pairs
of vortices are shed within each period (i.e. 2P mode). This phenomenon is similar to
experimental observations and numerical simulations of a two-degree-of-freedom rigid
cylinder undergoing vortex-induced vibrations, which displays multivortex shedding
(including vortex triplets and quintuplets) in Reynolds numbers around 10 000
(Williamson & Roshko 1988; Williamson & Govardhan 2004; Dahl et al. 2007).

The primary purpose of our study is to correlate the dynamics (especially the
flow-induced vibrations) of a bluff object with its structural flexibility. As an idealized
example, we investigate the dynamics of a prestressed elastic ring in an incoming flow.
Towards this end we apply an immersed-boundary (IB) algorithm, which is capable
of solving fluid interactions with highly deformable structures. Immersed-boundary
methods were first developed by Peskin (1977) for studying dynamics of immersed
elastic fibres. In such an approach, these fibres are modelled as distributions of forces
directly incorporated into the Navier–Stokes equations. By doing so, this method
reduces computational efforts associated with re-meshing of fluidic grids and avoids
mesh distortions encountered in highly flexible immersed structures (Hughes, Liu &
Zimmerman 1981; Tezduyar 1992, 2001). In this study, we apply a formally second-
order IB formulation (Lai & Peskin 2000), together with a spectral approach with
high computational efficiency to simulate responses of an immersed ring. Specifically,
with this method we consider the scenario about the flow-induced vibrations of a ring
pinned at one point.

The rest of the paper is organized as follows. In § 2, we detail the immersed-boundary
formulations and the numerical method, including an efficient spectral algorithm to
solve the equations. This method is tested by comparing its predictions of flow around
a fixed rigid cylinder with data from existing numerical and experimental studies, and
by comparing its simulations of the free vibration of a flexible ring with asymptotic
results. In both cases, excellent comparisons are achieved. Using this method, in § 3
we simulate flow-induced vibrations of a flexible ring pinned at one point and identify
deformation modes and resonant responses. Finally, in § 4 conclusions are drawn.

2. Mathematical formulations and numerical methods
2.1. Immersed-boundary formulations

In our immersed boundary formulation, the ring is idealized as a loop of massless
fibre and the structural force is transmitted directly to the surrounding fluid. As
shown in figure 1, the fluid motion is described in a space-fixed coordinate system
x = (x, y), in which the position of the ring is given as x(s, t), where s is a Lagrangian
marker along the ring and t is the time. Note that s is a dimensionless parameter
whose value changes from 0 to 1 along the ring. Mathematically, the fibre is modelled
as singular distribution of force and incorporated into the Navier–Stokes equations
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Figure 1. Definition of the computational domain.

as a forcing term f , i.e.

ρ

(
∂u
∂t

+ u · ∇u

)
= −∇p + μ∇2u + f (2.1)

and

∇ · u = 0, (2.2)

where ρ is the fluid density, μ is the dynamic viscosity, u = (u, v) is the flow velocity
and p is the pressure. Let X(s, t) and T (s, t) be the instantaneous location and the
internal tension of the fibre respectively, we have

f (x, t) =

∮
Γ

F(s, t)δ[x − X(s, t)] ds, (2.3)

where Γ is the contour of the ring. δ is the Dirac function. And

F(s, t) =
∂[T (s, t)τ (s, t)]

∂s
, τ =

∂x/∂s

|∂x/∂s| . (2.4)

Assuming that the fibre is linearly elastic with stiffness k and zero unstretched
length, we have T (s, t)τ (s, t) = k(∂ X/∂s). The overall hydrodynamic force on the ring
is obtained by integrating the force F along the length of the ring.

Physically, the problem defined above resembles an idealized two-dimensional
balloon with stretchable boundary. When the pressure difference between the inside
and the outside regions of the balloon disappears, it has zero area and perimeter. The
internal pressure required to swollen this balloon to a prescribed size increases with
the elasticity k of its boundary.

2.2. Numerical method

To formulate the coupled problem of fluid motion and ring deformation, we apply
two systems of grids: Eulerian grids (l, m) within the fluid domain (l is in the x

direction and m is in the y direction) and Lagragian points j along s. To distinguish
quantities described in these two systems, we denote those in the Eulerian system
by two indexes (e.g. xlm) and those in the Lagrangian system by a single index (e.g.
Fj ). The ring is discretized with a fixed grid size of Δs (Δs = 1/Ns , where Ns is the
number of elements along the ring), and the fluid domain is discretized with grid
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sizes Δx =Δy = h. Transformations of force and velocity between the fixed Eulerian
grids ( f lm and ulm) and the Lagrangian points (Fj and U j ) are achieved by using
the regularized discrete delta function, e.g.

f lm =
∑

j

Fj δh(x lm − Xj )Δs, (2.5)

U j =
∑
l,m

ulmδh(x lm − Xj )ΔxΔy. (2.6)

The Dirac function is approximated by

δh(x) =
1

h2
φ

(x

h

)
φ

(y

h

)
, (2.7)

where we apply the four-point approximation of the Dirac function with

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
8
(3 − 2|r | +

√
1 + 4|r | − 4r2), 0 � |r | < 1,

1
8
(5 − 2|r | +

√
−7 + 12|r | − 4r2), 1 � |r | < 2,

0, 2 � |r |.

(2.8)

The Navier–Stokes equations (2.1) and (2.2) are solved by using the formally
second-order algorithm developed by Lai & Peskin (2000).

In long-term simulations, the conventional immersed-boundary algorithm suffers
from spurious volume loss for problems with closed surfaces. In order to mitigate
this effect, we adopt the method proposed by Peskin & Printz (1993) and replace the
central difference operator D in the formulation described by Lai & Peskin (2000)
with a modified operator D. For example, at a grid (l, m) the divergence of u is
calculated as

(D · u)lm =
1

h2

∫ ∫
Blm

∇ · u(x′, t) dx ′, (2.9)

where Blm represents a box centred at the grid (l, m) with length h at each side. Thus
defined, D is essentially a local gradient averaging operator. For numerical efficiency,
(2.9) is evaluated by using

(D · u)lm =
∑
l′m′

ul′m′ · H (xl′m′ − xlm) h2, (2.10)

where

H (x) =
1

h2

∫ ∫
B00

∇δh(x + x ′) dx ′. (2.11)

Here B00 is a box centred at (0, 0) with length h at each side. We have

H (x l′m′ − xlm) =
1

h3

[
γl′−lκm′−m

γm′−mκl′−l

]
, (2.12)
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where γl = φ (l + (1/2)) − φ (l − (1/2)) and κl =
∫ 1/2

−1/2
φ (l + r) dr . Using (2.8), γ and κ

can be obtained explicitly as

γl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2−
√

2
8

, l = −2,
√

2
4

, l = −1,

0, l = 0 or |l| > 2,

−
√

2
4

, l = 1,

− 2−
√

2
8

, l = 2,

(2.13)

and

κl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4−π
64

, l = −2,
1
4
, l = −1,

12+π
32

, l = 0 or |l| > 2,
1
4
, l = 1,

4−π
64

, l = 2.

(2.14)

More details about the implementation of the IB method can be found in the literature
(see e.g. Peskin 2002).

Doubly periodic conditions are implemented in both x and y directions. In order to
prevent disturbances from neighbouring domains to enter the computational domain,
we apply the fringe-region method introduced by Spalart (1988a ,b). In this method,
we install a fringe region in the entrance of the computational domain between xstart

and xin (see figure 1). The disturbances leaving the neighbouring domain are damped
out when travelling form xstart to xin and the flow velocity is gradually adjusted to the
inflow velocity u∞. To achieve this, within the fringe region the momentum equation
(2.1) is modified by including an x-dependent forcing term. This forcing term is
expressed as f f rg (x) = λ (x) (u∞ − u), where λ is a fringe function flat in most of the
fringe region while decaying smoothly to zero at the boundaries of the fringe region.
Here we choose the fringe function to be

λ (x) = λ0

[
S

(
x − xstart

dr

)
− S

(
xin − x

df

)
+ 1

]
, (2.15)

where

S(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x � 0,

1

1 + e
1

1−x
+ 1

x

, 0 < x < 1,

1, x � 1.

(2.16)

Here dr and df characterize the widths of increasing and decreasing regions of
λ(x), respectively. Note that λ0 is the magnitude of the damping, which is determined
through numerical tests. In our simulations, the fringe region occupies 1/8 of the com-
putational domain. In addition, sensitivity tests have been performed to ensure that
the computational domain is sufficiently large so that boundary effects are negligible.

The discretized Navier–Stokes equations are linear and therefore can be solved
efficiently in Fourier space. For numerical efficiency, fast Fourier transformations
(FFT) with periodic boundary condition are applied for solving the system of
equations. More details on spectral solver are found in Peskin & Printz (1993).
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(b)
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Figure 2. Comparison between the wakes (illustrated by contours of vorticity) behind a
rigid cylinder predicted by (a) Saiki & Biringen (1996) using a virtual boundary method and
(b) the current method. Negative vorticity is shown by dashed lines.

2.3. Method testing

To corroborate the validity and accuracy of the immersed-boundary algorithm
developed above, below we use this method to study two cases, flow around a
fixed rigid cylinder and free vibrations of a flexible ring, and compare our predictions
with results from experiments, other numerical models and asymptotic studies.

2.3.1. Flow around a rigid cylinder

We first consider flow around a fixed and rigid cylinder. In our immersed-boundary
approach, the rigid cylinder is represented by applying the boundary forcing term
F(s, t) as

F(s, t) = K
[
Xcyl(s) − X(s, t)

]
, (2.17)

where Xcyl(s) represents a circular cylinder with diameter 2R. The constant K is
chosen to be sufficiently large to prevent any significant displacement of X(s, t)
from Xcyl(s). The incoming uniform flow velocity is u∞ =(U, 0), corresponding to
a Reynolds number Re =2ρUR/μ. The numerical parameters used in these testing
simulations are N1 × N2 = 564 × 450, the number of elements along the fibre Ns = 56,
Lx =65R and Ly = 52R.

In figure 2, we plot the wake behind the rigid cylinder at Re =100 and Re = 200 as
obtained by the current method. Also plotted are predictions from Saiki & Biringen
(1996) using a virtual boundary approach. It is seen that the two results are almost
identical to each other.

For quantitative comparisons, we obtain the first harmonic lift coefficient
C

(1)
L = F

(1)
L /ρU 2R, the mean drag coefficient CD = F D/ρU 2R and the Strouhal number

St = 2fsR/U (fs is the vortex shedding frequency), and compare with data from other
numerical models and experiments. The first harmonic lift force F

(1)
L and the mean

drag force F D are evaluated as

F
(1)
L = 2fsRe

{∫ t0+1/fs

t0

Fy(t)e
2iπfs t dt

}
, (2.18)

F D = fs

∫ t0+1/fs

t0

Fx(t) dt. (2.19)

As shown in table 1, the predictions of St , C
(1)
L and CD of this model are in agreement

with the listed benchmark results.
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St CD C
(1)
L

Re = 100 Berger & Wille (1972) 0.16–0.17
Engelman & Jaminia (1990) 0.173 1.411
Gresho et al. (1984) 0.18 1.76
Karniadakis & Triantafyllou (1992) 0.168
Kim, Kim & Choi (2001) 0.165 1.33
Papaioannou et al. (2008) 0.170
Lai & Peskin (2000) 0.165 1.45 0.33
Roshko (1954)∗ 0.164
Saiki & Biringen (1996) 0.171 1.26
Tseng & Ferziger (2003) 0.164 1.42 0.29
Williamson (1988)∗ 0.164
Current method 0.166 1.46 0.33

Re = 200 Liu, Zheng & Sung (1998) 0.192 1.31 0.69
Lai & Peskin (2000) 0.190
Linnick & Fasel (2005) 0.197 1.34 0.69
Papaioannou et al. (2008) 0.200
Roshko (1954)∗ 0.190
Taira & Colonius (2007) 0.196 1.35 0.68
Williamson (1988)∗ 0.196
Current method 0.198 1.39 0.70

∗ Experimental results.

Table 1. Comparison of the Strouhal number and the lift/drag coefficients of flow past a
rigid cylinder predicted by the current numerical model with results from previous studies.

2.3.2. Free vibrations of a flexible ring: comparisons with asymptotic results

We consider the free vibration of a flexible ring in still fluid and obtain the
frequencies and decaying rates of the oscillation modes. This problem can be
alternatively solved by a perturbation approach (Cortez et al. 2004). Results obtained
from this asymptotic method are compared with the IB predictions.

In its static position, the ring is circular so that in a cylindrical coordinate
system (r, θ) its configuration is expressed as r(θ, t) = R. Numerically, we choose
Lx = Ly = 5R, N1 = N2 = 256 and Ns = 720. With these parameters, no significant
disturbances from neighbouring domains are observed within the duration of
simulation (even though no fringe region is applied in these simulations).

An initial deformation is applied so that at t = 0, the shape of the ring is distorted
to r(θ, 0) = R(1+ε cos qθ), where q is an integer representing the wavenumber around
the ring and ε 	 1. The ring is then released and its free vibrations as well as the
surrounding flow field are recorded. It is observed that the ring undergoes a standing-
wave deformation with the prescribed wavenumber q . Correspondingly, the near-body
flow field contains 2q cells of circulation, with neighbouring cells rotating in opposite
directions (figure 3). We note that in the case with q = 2, the flow field also resembles
simulated results of the flow around a ring undergoing prescribed deformations by
using a vortex particle method (Zhang & Eldredge 2009) (see their figure 2).

On the basis of the recorded time history of the ring deformation, we obtain the
frequency β and the decaying rate α of mode q by assuming that the time dependency
of the motion is in the form eγ t , where γ = α+iβ . In order to extract β and α from the
results, we record the position of a point on the ring with a fixed θ (θ = θ0). Its radial
motion is extracted as r(θ0, t). This time-varying function is then fitted to the standard
form of a linear oscillator R(1 + εeαt cos βt cos qθ) by using the least-square scheme.
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q = 2

q = 4 q = 5

q = 3

Figure 3. Snapshots of the ring deformation and the surrounding flow field (shown in
streamlines) of modes q =2, 3, 4 and 5. For IB simulations, the initial deformation of the ring
is r(θ, t = 0) =R(1 + 0.05 cos qθ ).
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Figure 4. IB prediction of the radial motion of a point on the ring located at θ = θ0 = π
with initial disturbance r(θ, t = 0) = R(1 + 0.05 cos 4θ ), together with the least square fit to
R(1 + 0.05eαt cos βt cos 4θ0) with αR2/ν = − 46.9 and βR2/ν = 1029. Note that kR/(ρν2) =
2.51 × 105.

As shown in figure 4, with this technique, perfect matching between the original curve
and the least-square fit is obtained. Overall, eight different points evenly distributed
along the ring are tested and the differences in the measured α and β values are
found to be negligible.

As mentioned above, the free vibration of an elastic ring can be alternatively solved
by an asymptotic method. Following Cortez et al. (2004), the problem can be solved
by using a perturbation approach assuming that the deformation of the ring is small.
At the first order with respect to ring deformation, the linearized problem is solved
and from which the leading-order approximation of the frequency β and the decaying
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Figure 5. (a) The frequency β and (b) the decaying rate α of modes q = 2, 3, 4 and 5. Both
α and β are normalized by ν/R2. For IB simulations, the initial deformation of the ring is
r(θ, t = 0) =R(1 + 0.05 cos qθ ) and kR/(ρν2) = 2.51 × 105.

rate α are evaluated. A detailed description of this asymptotic solution is provided in
the Appendix. Figure 5 shows the comparison between the numerical prediction and
the asymptotic approximation of α and β of four different modes, q = 2, 3, 4 and 5.
The two predictions match well with each other.

3. Results
We consider a configuration with one point of the ring pinned in space within

an incoming uniform flow u∞ = (U, 0). To mitigate transient effects, in the beginning
of the simulation the flow speed is increased slowly from zero to U . Hereafter, the
problem is normalized by assuming that the diameter of the undeformed ring 2R,
the incoming flow speed U and the fluid density ρ are all 1. The Reynolds number
based upon 2R is chosen to be 100. The numerical parameters are Lx = 32, Ly = 8,
Nx = 512, Ny = 128 and Ns =80.

3.1. The mean deformation

Our simulations demonstrate that in such a configuration the ring motion contains
a mean deformation, and upon it, oscillatory deformations as well as a rigid-body
rotation around the pinning point. The oscillatory deformations and the rotation
are activated by the periodic shedding of vortices from the ring and the subsequent
variations of the drag force, the lifting force and the pitching moment. In this
configuration, a cusp is formed at the pinning point. Numerical tests have been
performed to confirm that the fluid grids are sufficiently dense so that the flow field
near the cusp remains smooth and regular. In particular, in highly flexible cases we
also carefully monitored the positions of Lagrangian points near the cusp so that the
distances between them are sufficiently large in comparison to the size of the fluid
grids (otherwise the two points may ‘stick’ together because of the approximations in
the immersed-boundary method).

Self-induced and self-limiting oscillations are observed. With most values of k, the
base frequency of the ring motion remains the same as the vortex shedding frequency.
Thus, the mean deformation is extracted via averaging over one vortex shedding
period. The mean deformations of the ring with three different stiffnesses (k =1.0,
0.3 and 0.1) obtained in this manner are displayed in figure 6. As we see, when
the stiffness is reduced the mean configuration of the ring changes from a circle to
a teardrop shape. Within a small range of k (0.15 < k < 0.25), however, no simple
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Figure 6. Mean deformations of ring with different k.

periodic ring motion is observed and subsequently the mean deformation can not be
determined. This corresponds to the scenario of fluid–structure resonance to which
detailed studies and discussions are dedicated (see § 3.4).

3.2. The oscillatory deformations

After subtracting the mean deformation, the oscillatory modes within the motion are
decomposed via Fourier analysis. Let X(sj , t) = (x(sj , t), y(sj , t)) (j = 1, . . . , Ns), with
Fourier expansion we express x(sj , t), y(sj , t) as a linear combination of M Fourier
modes as

x(sj , t)
.
=

M∑
m=1

Ax
m(sj ) cos

[
ωmt + φx

m(sj )
]

(3.1)

and

y(sj , t)
.
=

M∑
m=1

Ay
m(sj ) cos

[
ωmt + φy

m(sj )
]
, (3.2)

where ωm = 2πm/MΔT (ΔT is the sampling interval). This Fourier analysis allows us
to obtain responses at a certain harmonic by filtering out other components.

In figure 7, we plot frequencies of the dominant modes of the ring deformation.
The first mode has the same frequency fs as the vortex shedding frequency, and the
second mode has frequency 2fs . Deformations at these two harmonics are obtained
from (3.1) and (3.2) and displayed in figures 8 and 9 at two typical cases: k = 0.1
and k = 0.4. It is seen that at k = 0.1, the first harmonic motion corresponds mostly
to deformations in the transverse direction (hereafter the bending motion), while the
second harmonic motion is negligibly small. At k = 0.4, on the other hand, the first
harmonic motion is dominated by a rigid-body pitching motion around the pinning
point. In the second harmonic, a longitudinal deformation characterized by a stretch
and compression of the ring appears (referred to as the tapping motion). The relation
between the frequencies of longitudinal and transverse motions is consistent with the
experiment by Jung et al. (2006) about the flow-induced oscillations of an elastic loop,
in which a figure-of-eight motion pattern for the centre of the loop was observed.

As a metric of the magnitude of each mode, we define an ‘energy norm’ of its modal

response as Em =
√

(1/Ns)
∑Ns

j = 1 [Ax
m(sj )2 + A

y
m(sj )2]. Thus defined, the energy norm
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Figure 7. First two dominant frequencies of the ring motion and the hydrodynamic forces
vs. k: (�) first harmonic, corresponding to vortex shedding frequency and the dominant
frequency of the lift force and the transverse motion; (�) second harmonic, corresponding to
the dominant frequency of the drag force and the longitudinal motion.
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Figure 8. Snapshots of the maximum ring deformations superposed upon the mean
configuration (shown by (——)) at (a) the first harmonic (fs) and (b) the second harmonic
(2fs). k =0.1.
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Figure 9. Snapshots of the maximum ring deformations superposed upon the mean
configuration (shown by (——)) at (a) the first harmonic (fs) and (b) the second harmonic
(2fs). k =0.4.
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Figure 10. Energy norms of the first two dominant modes vs. k. �, first harmonic; �,
second harmonic.
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Figure 11. Amplitude of perimeter change in the second harmonic versus k.

of the ring motions in the first and the second harmonics is displayed in figure 10. As
clearly shown, both of them reach their maximum values as k approaches 0.25 from
above. Beneath that critical value of k, an abrupt drop in the motion is observed.
When k is smaller than 0.15, the second harmonic motion becomes negligibly small,
consistent with what is shown in figure 8.

Another important value that characterizes the ring deformation is its perimeter.
Fourier analysis based upon the recorded time history of this value shows that its
variation concentrates in the second harmonic. This suggests that the length change
is mostly attributed to the tapping motion. In this frequency, the amplitude of the
perimeter change at different values of k is plotted in figure 11. Near k = 0.25, a peak
is also observed.

3.3. The drag and lift forces

Figure 12 displays the dominant harmonic components of the drag coefficient and
the lift coefficient as functions of the structural stiffness k. For comparison, in the
same figure we also show the corresponding values of the mean drag coefficient and
the first harmonic lift coefficient of a fixed rigid cylinder with the same diameter as
the undeformed ring. It has been shown that the mobility and structural flexibility
of the ring greatly increase the mean drag. This is mostly attributed to the increase
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Figure 12. (a) Mean (�) and second harmonic (�) components of the drag coefficient CD vs.
k. (b) First (�) and third harmonic (�) components of the lift coefficient CL vs. k. The dashed
lines indicate the mean drag coefficient (in a) and the first harmonic lift coefficient (in b) of a
fixed rigid cylinder with the same diameter as the undeformed ring.
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Figure 13. Time histories of CD and CL at k = 0.175.

in the swept area due to body motion (see figures 8 and 9). Except for a small range
of k near the resonance, the first-harmonic lift force on the ring is also larger than
that on a fixed rigid cylinder. On the other hand, with sufficiently small stiffness (e.g.
k < 0.15) a flexible ring is seen to sustain smaller mean drag and first-harmonic lift
forces than a pinned rigid cylinder (as approached by large values of k).

3.4. Fluid–structure resonance

In figures 10 and 12, abrupt changes in the mechanics of the ring are observed across
a relatively narrow range of k, 0.15 < k < 0.25, suggesting the existence of resonance
between the flow field and the ring. We herein conduct a close-up study of the system
within that range. As an example, time histories of CL and CD at k =0.175 are shown
in figure 13. CL displays a beating behaviour, indicating that it includes two dominant
frequencies close to each other.

As demonstrated in figure 14, the Fourier analysis of CL shows that near the
first harmonic there exist two frequencies locating at f1 = 0.161 and f2 = 0.177. We
note that because of the relatively short simulation time, the accuracy of the Fourier
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Figure 14. Fourier components of the lift coefficient CL at k =0.175.

analysis is not guaranteed. To ensure the accuracy of these predictions we also employ
an alternative approach by fitting the CL curve shown in figure 13 using a function
containing three harmonic components with unknown frequencies, amplitudes and
phases via the least-square algorithm. The amplitudes and frequencies of the two
leading harmonic components are consistent with results of the Fourier analysis.

A similar behaviour has been reported in studies of reduced models of self-induced
and self-sustained oscillations. One of these models, which has been widely used as a
mathematical representative of vortex-induced vibration, is based upon the Rayleigh
equation or the van der Pol equation of the form

ü + ω2u = ε

(
u̇ − 1

3
u̇3

)
+ E(t), (3.3)

where u represents the displacement. The excitation E(t) is periodic and has the
form E(t) = εκcos Ωt, (Ω = ω + εσ ). As indicated by Nayfeh & Mook (1979), this
system displays complicated responses as Ω ∼ ω. Indeed, close to ω, there exists a
‘pull-out’ frequency ωp (ωp >ω). When Ω approaches ωp from above, the system
exhibits a strong beating due to the coexistence of the natural frequency ω and the
excitation frequency Ω . When Ω is lower than ωp , on the other hand, the response
contains one dominant frequency with a slow modulation. Such phenomenon has
also been discovered in vortex-induced vibrations of a rigid cylinder with two degrees
of freedom based upon both numerical and experimental studies (Zhou, So & Lam
1999; Jauvtis & Williamson 2004).

Assuming that the ring behaves similar to a van der Pol oscillator, we conclude
that at k = 0.175 the natural frequency of the system is 0.161 and the vortex shedding
frequency is 0.177.

3.5. Flow field

In figure 15, we plot wakes behind the ring with three different stiffnesses, a highly
flexible ring (k =0.1), a nearly rigid ring (k = 1.0) and a ring undergoing fluid–structure
resonance (k = 0.175). Interestingly, at these different values of k no qualitative change
in the wake signature is observed. Quantitative differences, e.g. the longitudinal
distances between neighbouring vortices, do exist owing to slight variations in the
vortex shedding frequency (see figure 7). Specifically, the vortex shedding remains in a
2S pattern. It is thus clear that at the Reynolds number we herein consider (Re = 100),
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Figure 15. The wakes (illustrated by contours of vorticity) behind a ring with (a) k = 0.1,
(b) k = 0.175 and (c) k = 1.0. Negative vorticity is shown by dashed lines.

the occurrence of multivortex shedding reported in much higher Reynolds numbers
(Jung et al. 2006; Dahl et al. 2007) does not exist. To illustrate the complicated vortex
shedding phenomena and their correlations with ring stiffness, future investigations
concentrating on cases with high Reynolds numbers are required.

4. Conclusions
Using an immersed-boundary method, we have numerically investigated the flow-

induced vibrations of a deformable ring with one point pinned in space. The ring
is modelled as a massless elastic fibre. The numerical algorithm includes a formally
second-order Navier–Stokes solver together with a highly efficient spectral method.
Its validity and accuracy have been tested and confirmed through comparisons with
other numerical models, experiments and asymptotic results.

During flow-induced vibrations, the motion and deformation of the ring consist
of several parts, including: (i) a mean deformation, (ii) a rigid-body pitching motion
around the pinning point, (iii) a bending deformation in the transverse direction, and
(iv) a tapping deformation in the longitudinal direction. Among them the dominant
frequencies of the rotation and the bending deformation are the same as the frequency
of vortex shedding, while the dominant frequency of the tapping deformation is twice
this value. For low-stiffness rings, the tapping deformation becomes negligible. The
ring oscillation is dominated by the lateral bending, resembling the deformation of
a flag observed experimentally (Taneda 1968; Zhang et al. 2000) and numerically
(Zhu & Peskin 2002; Connell & Yue 2007). When stiffness is high, the motion is



358 K. Shoele and Q. Zhu

dominated by the rigid-body rotation. In comparison to a fixed rigid cylinder of the
same size, on a pinned flexible ring the hydrodynamic loads (represented by the mean
drag force and the first harmonic lift force) are significantly increased as a result
of the increased swept area. However, compared with a pinned rigid cylinder the
structural flexibility of an elastic ring effectively reduces the hydrodynamic forces.

Fluid–structure resonance is observed when 0.15 <k < 0.25. Across this range jumps
in the ring motion and hydrodynamic loads are discovered. In addition, within this
region our numerical simulations show distinctive beating phenomenon in the lifting
force. This indicates that despite the complexity of this problem as a result of
structural flexibility, it still follows similar fluid–structure interaction mechanisms of
reduced models (e.g. van der Pol oscillators) or low-degree-of-freedom systems.

This study was partially supported by the National Science Foundation under
grant CBET-0844857. Computational supports from TeraGrid resources provided by
the San Diego Supercomputer centre and the National centre for Supercomputing
Applications are acknowledged.

Appendix. Asymptotic solutions of the free oscillations of a ring
In § 2.3.2, we employ a perturbation method developed by Cortez et al. (2004) to

determine the frequencies and decaying rates of free vibration modes of a ring. The
key procedure of this method is elaborated below.

In two-dimensional problems, the flow field can be conveniently described through
a vorticity field ω(x, t) and a flow function ψ(x, t). In terms of ω and ψ , and with
the immersed-boundary included, the Navier–Stokes equations are expressed as

∂ω

∂t
+ u · ∇ω = ν∇2ω +

1

ρ
ẑ · (∇ × f ) (A 1)

and

∇2ψ = −ω, (A 2)

where ẑ · (∇ × f ) is the z component (i.e. out-of-the-plane component) of the curl of
f , the force exerted by the immersed boundary as determined by (2.3). Note that
u = (∂ψ/∂y, −∂ψ/∂x); ν = μ/ρ is the kinematic viscosity.

Considering small deformations, the configuration of the ring can be expressed as
a summation of static circular shape and a perturbation series as

X(s, t) = X (0)(s) + εX (1)(s, t) + · · · , (A 3)

where X (0) represents the static state and ε is a small factor characterizing the amount
of deformation. Following Cortez et al. (2004), the force f , the vorticity ω and the
flow function ψ are expressed as perturbation series in terms of ε. At O(ε0), we have
zero vorticity and flow function. Collecting terms in O(ε1), we have

∂ω(1)

∂t
= ν∇2ω(1) +

1

ρ
ẑ · ∇ × f (1) (A 4)

and

∇2ψ (1) = −ω(1). (A 5)
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Expressing X (1) components in r and θ directions as X(1)
r and X

(1)
θ , respectively,

ẑ · ∇ × f (1) can be written as

ẑ · ∇ × f (1) = k

(
∂2X

(1)
θ

∂s2
+

∂X(1)
r

∂s

)
∂

∂r

[
δ(r − R)

r

]
− k

(
∂3X(1)

r

∂s3
− ∂2X

(1)
θ

∂s2

)
δ(r − R)

r
.

(A 6)
Also, the ring deformation rate and the flow function are related by

∂X(1)
r

∂t
=

1

r

∂ψ (1)

∂θ

∣∣∣
r=R

, (A 7)

∂X
(1)
θ

∂t
= −∂ψ (1)

∂r

∣∣∣
r=R

. (A 8)

Expressing the first-order perturbation of variables in modal form in t and θ , e.g.
ω(1) = eiqθeγ t ω̃(r), the governing equations in O(ε1) can be rewritten as(

γ +
νq2

r2

)
ω̃ =

k

ρ
(−q2X̃θ + iqX̃r )

(
δ(r − R)

r

)′

+
ν

r
(rω̃′)′ +

k

ρ
(iq3X̃r − q2X̃θ )

δ(r − R)

r
, (A 9)

− 1

r
(rψ̃ ′)′ +

q2

r2
ψ̃ = ω̃, (A 10)

γ X̃r = iqψ̃(R), (A 11)

γ X̃θ = −ψ̃ ′(R), (A 12)

where the primes denote derivatives with respect to r .
We note that the problem can be formulated alternatively by considering the flow

fields inside and outside the ring separately, with jumps in ω̃ and ω̃′ on the ring as

ω̃(R+) − ω̃(R−) =
k

ν
(q2X̃θ − iqX̃r ), (A 13)

ω̃′(R+) − ω̃′(R−) = −i
k

ν
q(q2 − 1)X̃r . (A 14)

Solving the governing equation (A 9) inside and outside the ring, ω̃ is obtained as

ω̃(r) =

{
bJq(iΩr), inside the ring,

aHq(iΩr), outside of the ring,
(A 15)

where Ω =
√

γ /ν. Note that Jq and Hq are the qth order Bessel and Hankel functions,
respectively; a and b are unknown coefficients. Similarly, by solving (A 10) for the
flow function equation ψ̃ , we have

ψ̃(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

br

2iqΩ

[
Jq−1(iΩr) + Jq+1(iΩr)

]
+

rq

2iqΩ

[
aHq−1(iΩR) − bJq−1(iΩR)

]
,

0 � r < R,

ar

2iqΩ

[
Hq−1(iΩr) + Hq+1(iΩr)

]
− r−q

2iqΩ

[
aHq+1(iΩR) − bJq+1(iΩR)

]
,

r > R.

(A 16)
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Subsequently, X̃r and X̃θ can be expressed as a function of a and b; (A 7) and
(A 8). Solving for a and b and using the conditions (A 13) and (A 14) lead us to the
following eigenvalue problem for the unknown γ (γ = α + iβ , where α and β are the
decaying rate and the frequency of mode q , respectively.)

[M]

[
X̃r

X̃θ

]
= 0, (A 17)

where

[M] ≡
[

M11 M12

M21 M22

]
, (A 18)

with

M11 = i

{
ν2ρ

k
Ω3

[
Hq(iΩR)

Hq−1(iΩR)
− Jq(iΩR)

Jq+1(iΩR)

]
+ iq

}
, (A 19)

M12 =
ν2ρ

k
Ω3

[
Hq(iΩR)

Hq−1(iΩR)
+

Jq(iΩR)

Jq+1(iΩR)

]
− iq2, (A 20)

M21 = i

{
ν2ρ

k
Ω4

[
2 − Hq+1(iΩR)

Hq−1(iΩR)
− Jq−1(iΩR)

Jq+1(iΩR)

]
+ 2q

(
q2 − 1

)}
, (A 21)

M22 = −ν2ρ

k
Ω4

[
Hq+1(iΩR)

Hq−1(iΩR)
− Jq−1(iΩR)

Jq+1(iΩR)

]
. (A 22)

The values of α and β are determined by solving det[M] = 0.
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